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Abstract 

 
Task offloading in vehicular networks is hot topic in the development of autonomous driving. 
In these scenarios, due to the role of vehicles and pedestrians, task characteristics are changing 
constantly. The classical deep learning algorithm always uses a pre-trained neural network to 
optimize task offloading, which leads to system performance degradation. Therefore, this 
paper proposes a neural network fine-tuning task offloading algorithm, combining with 
location prediction for pedestrians and vehicles by the Payne model of fluid dynamics and the 
car-following model, respectively. After the locations are predicted, characteristics of tasks 
can be obtained and the neural network will be fine-tuned. Finally, the proposed algorithm 
continuously predicts task characteristics and fine-tunes a neural network to maintain high 
system performance and meet low delay requirements. From the simulation results, compared 
with other algorithms, the proposed algorithm still guarantees a lower task offloading delay, 
especially when congestion occurs. 
 
 
Keywords: Internet of Vehicles, task offloading, neural network, fine-tuning, parameter 
optimization. 
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1. Introduction 

Autonomous vehicles are increasingly integrated into social life, greatly changing people’s 
production and lifestyle. An intelligent vehicle can make intelligent decisions based on 
external environmental conditions and then trigger physical actions [1]. These functions are 
accompanied by a large number of tasks which are data-intensive, computing-intensive, and 
delay-sensitive. Although the intelligent vehicle itself has computing resources, it cannot 
perform large-scale calculations [2]. In order to overcome this limitation of intelligent vehicles, 
the Internet of Vehicles system extends the concept of cloud computing [3]. In this model, the 
cloud provides computing resources and in order to scalable extensive data processing the 
cloud utilizes the resources of local vehicles and remote data centers but the connection 
between the Internet of Vehicles system and the cloud data center usually requires multiple 
hops, resulting in long communication time and data transmission delay. Consequently, this 
model becomes less suitable for delay-sensitive operations. In autonomous driving, intelligent 
vehicles need to make decisions based on the environment at the millisecond level. With 
cloudlet and fog nodes, edge computing can bring infrastructure, software services, and 
platforms closer to data sources [4], thus playing an important role in solving this limitation. 
In edge computing, an intelligent vehicle first offloads tasks to edge servers for processing, 
and then returns the results to the vehicle itself. Edge computing can provide high mobility, 
high security, low delay services, and provide computing resources beyond the vehicle itself 
[5]. In mobile edge computing (MEC), computing offloading is a highly important technology. 
Computing offloading decisions and resource allocation are the two most important parts [6]. 

Task offloading is expressed as a NP-hard problem. Previous studies usually use traditional 
algorithms. Combining the multi-armed bandit theory, Sun et al. in [7] designed an algorithm 
based on adaptive learning which considered task offloading among vehicles. Dass et al. in [8] 
designed a graph optimization problem and a two-fold efficient heuristic approach. In a multi-
user MEC scenario, Li et al. in [9] combined dynamic niche and proposed an improved 
algorithm based on self-organizing learning. For the task offloading, Liu et al. designed a 
matching algorithm based on pricing in [10]. Misra et al. in [11] proposed a greedy heuristic 
approach by jointly considering some vital metrics. Using a direct acyclic graph to represent 
tasks and their dependencies, Hou et al. in [12] presented an algorithm to find optimal 
offloading orderings. Yuan et al. considered the offloading of interdependent tasks and 
proposed a convex-based algorithm in [13]. Considering that a task can be divided, Li et al. 
proposed an interior point method-based algorithm in [14]. Considering the cloud-MEC 
collaborative scenario, Zhao et al. designed a distributed algorithm based on the game-
theoretic and Lagrange multiplier method in [15]. Considering the dependence of tasks, Liu et 
al. in [16] proposed a heuristic ranking-based algorithm. For the collaborative computation 
among the vehicles, the unmanned aerial vehicle, and the terrestrial computing servers, Zhao 
et al. in [17] proposed an online distributed algorithm based on Lyapunov optimization. 

Although the task offloading decision using the traditional algorithm described above can 
be close to the optimal solution, it requires enough time to reach convergence and is difficult 
to apply to the Internet of Vehicles scenario with high real-time requirements. As a result, deep 
learning methods are widely used. Considering some vital conditions, Liu et al. proposed an 
algorithm based on deep reinforcement learning in [18]. Considering the changes in network 
conditions, Yang et al. in [19] designed an algorithm based on multi-task learning. Due to the 
service availability and mobility of vehicles and the priority of tasks, Shi et al. in [20] 
developed a soft actor-critic based algorithm. Taking into account the dynamics of vehicles 
and frequent changes in decision-making, Guo et al. in [21] designed an intelligent task 



3418                                                                 Wu et al.: Dynamics-Based Location Prediction and Neural  
   Network Fine-Tuning for Task Offloading in Vehicular Networks 

offloading deep Q-learning based algorithm. Considering the heterogeneous environment, Sun 
et al. in [22] proposed a deep deterministic policy gradient-based multiple continuous variable 
decision model. To reduce the impact of congestion on the QoS in the Internet of Vehicles 
scenarios, the load balance in the MEC system is necessary to consider. Taking into account 
vehicles’ mobility and delay requirements, Hsu et al. in [23] proposed an algorithm that 
combined particle swarm optimization and neural network. Considering the intrinsic task 
dependency, Wang et al. in [24] proposed an off-policy reinforcement learning algorithm. In 
our previous studies in [25], a location prediction-based algorithm was proposed, which saved 
the time consumption of signaling and optimization. However, that study did not take into 
account that task characteristics were constantly changing in the Internet of Vehicles scenario. 
A pre-trained deep neural network (DNN) was always used to optimize task offloading, 
making that algorithm only adaptable to a relatively stable scenario. 

When pedestrians and vehicles move, the difference in characteristics of tasks could be 
relatively large, so a fixed neural network is difficult to always get the most suitable offloading 
decision, leading to a degradation of the system performance. Therefore, we propose a neural 
network fine-tuning task offloading algorithm, combining with location prediction for 
pedestrians and vehicles by the Payne model of fluid dynamics and the car-following model, 
respectively. The proposed algorithm can complete the prediction procedure before the 
vehicles move to a certain location in front. After the locations are predicted, characteristics 
of tasks can be obtained and the neural network will be fine-tuned. When new task 
characteristics are generated, the fine-tuned neural network can optimize task offloading in 
real-time and quickly obtain decisions. Finally, by continuously predicting and fine-tuning, it 
ensures that the offloading decisions made by the neural network become increasingly better. 
This paper has the following main contributions: 

·A dynamics-based location prediction algorithm is proposed for the pedestrian-vehicle 
intersection scenario. The location prediction algorithm uses the Payne model of fluid 
dynamics and the car-following model to predict locations for pedestrians and vehicles, 
respectively. 

·A neural network fine-tuning task offloading algorithm is proposed to ensure a neural 
network can adapt to the scenario with large differences in task characteristics. Because the 
algorithm combines location prediction, it can sense the change of task characteristics in the 
first time and fine-tune a neural network in time. The fine-tuned neural network makes a better 
task offloading decision to meet the low delay requirements. 

The remaining sections are organized as follows. In Section 2, the system model is 
presented. In Section 3, we introduce dynamics-based location prediction. In Section 4, the 
proposed algorithm is described. In Section 5, we perform simulations and show the results 
and performance of this algorithm. We give the conclusion in Section 6. 

2. System Model 
The scenario we study starts from the normal driving of vehicles, then vehicles gradually 
generate congestion, and finally the congestion dissipates. Specifically, at the crossroads, 
pedestrians walk along the road, and vehicles slow down and wait for all pedestrians to pass, 
resulting in road congestion. Until all pedestrians pass completely, vehicles accelerate and 
continue to move forward. In the scenario, the number and type of tasks generated by vehicles 
are related to the number of pedestrians around, the size of each task is related to the number 
of pedestrians within a certain range of the vehicle, and the location distribution of tasks is 
related to the locations of vehicles. Because locations of vehicles and pedestrians are 
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constantly changing, task characteristics are continuously changing over time. 
 

 
Fig. 1. Pedestrian-vehicle interaction scenario. 

 
As shown in Fig. 1, there are  pedestrians,  vehicles and  RSUs with MEC servers 

in the scenario. These RSUs are marked as  and placed equidistantly on 

the side of the road.  indicates vehicle  generates a total 

of  tasks, where , ,  represent the task size, the complexity, and the maximum 
tolerable delay, respectively. 

The sum of the offloading delays of task  to  is given by  

                                         (1) 
To the right of (1), the first item is the computation delay, which is related to the task 

complexity. The second term is the transmission delay, which is related to the task size and 
the distance from the selected RSU to the task. The last two terms are the computation and 
transmission waiting delay, which are related to the task arrival rate .  of the th RSU 
is determined by the number of tasks within the RSU coverage radius . 

Aiming at minimizing the total offloading delay of all tasks in the system, task offloading 
can be modeled as an optimization problem, given by 

                                                      (2a) 

                                                    (2b) 

                                                    (2c) 

                                                           (2d) 

where the task  offloads to , indicated by . The first and second constraints 
ensure that only one RSU can be selected for a task to offload. The third constraint indicates 
that the tolerable delay should be greater than the offloading delay of each task. 
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3. Location Prediction 
Aiming at the shortcoming of using classical deep learning algorithms for task offloading, we 
propose a neural network fine-tuning task offloading algorithm, combining with location 
prediction for pedestrians and vehicles by the Payne model of fluid dynamics and the car-
following model, respectively. After the locations are predicted, characteristics of tasks can be 
obtained and the neural network will be fine-tuned. Then, the fine-tuned neural network is 
used to generate task offloading decisions with better performance. Finally, by continuously 
predicting task characteristics and fine-tuning, the neural network is ensured to adapt to the 
scenario with large differences in task characteristics. Task characteristics are closely related 
to the locations of vehicles and pedestrians. Next, we describe the prediction methods for the 
locations of pedestrians and vehicles. 

Based on the fluid dynamics model, considering the characteristics of pedestrian flow, this 
flow may be approximated as fluid motion, and the variations of its average density and 
average velocity with time and space are described by means of fluid dynamics. The pedestrian 
flow is predicted by the Lighthill-Whitham-Richards (LWR) model, which is a fluid dynamics 
model of one-dimensional pedestrian [26] [27]. 

The LWR model applies the continuity equation in fluid dynamics to the pedestrian flow, 
compares the pedestrian flow to a continuous medium, and establishes a continuous equation 
(3a) of pedestrian conservation, which ensures the conservation of the number of pedestrians 
on the road, and assumes that the pedestrian flow on the road is always in a state of motion 
balance. The model can simulate the nonlinear characteristics of pedestrian shock wave 
formation and congestion grooming and can be used to describe the situation when there is no 
ramp in the road to make the road pedestrian flow in and out. However, since LWR assumes 
a balanced relationship between velocity and density, it cannot accurately describe the 
unbalanced pedestrian flow process. 

Payne in [28] proposed a new dynamic equation (3b) to solve this problem. The Payne 
model is given by 

( , ) [ ( , ) ( , )] 0,k x t k x t u x t
t x

∂ ∂ ⋅
+ =

∂ ∂
                                           (3a) 

( , ) ( , ) 1 ( , )( , ) ( ( , ) ( ( , ))) ,
( , )e

u x t u x t v k x tu x t u x t u k x t
t x k x t xτ τ

∂ ∂ ∂
+ = − − −

∂ ∂ ∂
            (3b) 

where ( , )k x t  represents the pedestrian density, ( , )u x t  represents the average velocity of 
pedestrians and ( ( , ))eu k x t  is the velocity-density balanced function. τ  is the relaxation time.

( ( , ))0.5 0
( , )

eu k x tv
k x t

∂
= − >

∂
 is the expectation index. To the right of (3b), the first item represents 

the acceleration process in which the pedestrian adjusts its velocity to achieve a balanced 
velocity-density relationship. The second item is the expected item, which is the process of the 
pedestrian’s reaction to the pedestrian state in front of him. For example, if the density in front 
becomes higher due to congestion, the pedestrian has to reduce the velocity, and vice versa. 
Because the average velocity of the pedestrian flow cannot instantaneously follow the density 
change. However, according to the density in front, the pedestrian will adjust the velocity, the 
Payne model can be used to predict pedestrian flow. 

If the above model is used to predict pedestrians, the selection of the balanced function 
( )( , )eu k x t  must be considered. In essence, the so-called velocity-density relationship has only 

statistical significance. The Lee velocity-density balanced function is given by 
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+
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where fu  represents the unimpeded velocity, indicating that the maximum velocity of 
pedestrian walking without congestion or obstruction. jk  represents the jamming density, 
indicating that pedestrians will not be able to flow freely and begin to form congestion when 
the pedestrian density exceeds the jamming density. G  and θ  are constants. 

This paper chooses the Lee balanced function because this function can describe the 
pedestrian situation we study. Under different pedestrian densities, the factors affecting 
pedestrian velocity are also different. The balanced function expresses what factors are related 
to pedestrian velocity. In the discrete state, pedestrian flow is in the stage where individual 
behavior characteristics play a major role. Pedestrian velocity fluctuates nonlinearly with the 
change of environmental state and individual behavior characteristics. With the increase of 
pedestrian flow density, individual behavior is restricted, and the influence of different age 
distribution on pedestrian flow velocity is relatively small, which is basically linear. When 
pedestrians are in a high-density continuous flow state, the influence of individual behavior 
characteristics and changes in the surrounding environment on the high-density continuous 
flow state is almost negligible. 

The Payne model in fluid dynamics is often solved using difference methods. These 
methods divide the continuous spatial and temporal domains into discrete grids or cells, and 
then use numerical approximation methods such as finite difference, finite element, etc., to 
transform the partial differential equations into difference equations. Difference methods can 
provide numerically stable solutions, ensuring that the obtained solution is reliable and 
accurate. This is crucial for complex fluid dynamics problems where exact solutions are 
difficult to obtain analytically. 

We need to discretize the space and time, standardize the space step and the time step, and 
then discretize the Payne model. The space domain is x  meters long and d  meters wide. 
[0, ]x  is discretized into M  cells, where the i th cell is 1 2 1 2[ , ]i i iI x x− +=  of length x∆ . preT  
represents the prediction time. The time domain [0, ]preT  is also discretized and divided into 
time level { | 0,1,...}nt n =  and the time step nt∆  is given by 1n n nt t t+∆ = − . Here we choose 
the equal interval time step t∆ . 

The space step x∆  is generally set according to the working conditions, but the time step 
t∆  is an important parameter in numerical simulation. If the time step is too large or too small, 

it will have a large deviation from the true value. Therefore, on the premise of ensuring the 
stability of the calculation, the results of the experimental data can be used as the verification 
data to select the time step or according to the time scale of the physical phenomenon to be 
studied. It is necessary to ensure that the time step can capture the flow characteristics of this 
physical phenomenon. At the same time, meeting the Courant-Friedrichs-Lewy (CFL) 
condition is a necessary condition to ensure the numerical stability and accuracy of the fluid 
model. It stipulates that the distance of the wave walking over a period of time is less than that 
of a specific unit. The equation is as follows 

,
max( ( , ))

xt C
u x t
∆

∆ ≤                                                      (5) 

where C  is the coefficient of stability. In order to satisfy the stability condition, it is necessary 
to take the minimum limit on all grids as the period, so the maximum flow rate on all grids 
should be taken. 
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Algorithm 1 Location Prediction Based on Dynamics 
Set preT , x , x∆ , jk , fu , τ , d , t∆ , etc. 

Initialize vehicle locations 0 0( ) { ( ) | 1, 2,..., }PVC VC
nt P t n N= =   and pedestrian 

locations 0 0( ) { ( ) | 1, 2,..., }PPS PS
kt P t k K= =  

for 0 0 0, , 2* ,..., pret t t t t t T t= + ∆ + ∆ −∆  do 
if 0t t=  then 
    According to the initial location of pedestrians, the pedestrian density of 

all grids at time t  can be obtained by the definition of pedestrian density 
for 1, 2,...,i M=  do 

           Calculate the pedestrian velocity using (4) 
end for 

else 
for 2,3,...,i M=  do 

            The use of open boundary conditions at the entrance means that the 
measured data are completely used 
Calculate current pedestrian density on the pedestrian density at the 
previous moment using (6a) 

    end for 
    for 1, 2,...,i M=  do 
            if 0t

ik ≠  then  
Calculate pedestrian velocity using (6b) 

else 
Calculate pedestrian velocity using (4) 

end if 
end for 

end if 
for 1, 2,...,k K=  do 

According to the current location of the pedestrian ( )PS
kP t , the next 

moment location ( )PS
kP t t+ ∆  is calculated by the grid velocity and 

walking time of the pedestrian 
end for 

( ) { ( ) | 1, 2,..., }PPS PS
kt t P t t k K+ ∆ = + ∆ =  can be obtained 

for 1, 2,...,n N=  do 
    According to the latest locations of pedestrians, the vehicle locations are 

obtained by using the car following model 
end for 

( ) { ( ) | 1, 2,..., }PVC VC
nt t P t t n N+ ∆ = + ∆ =  can be obtained 

end for 
The final predicted location ( ) { ( ) | 1, 2,..., }PPS pre PS pre

nT P T n N= =   and 
( ) { ( ) | 1, 2,..., }PVC pre VC pre

nT P T n N= =  can be obtained. 
 

For the Payne model, the finite difference about space and time is carried out, and the Euler 
integral method is used to discretize the model. Then the Payne prediction model can be given 
by 
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∆
                                           (6a) 

1 1 11[ ( ( ) )],
n n n n

n n n n ni i i i
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i
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x k xτ

+ − +− −
= − ∆ + − +

∆ ∆
                       (6b) 

where the pedestrian density n
ik  and the pedestrian velocity n

iu  are used to represent the 
values of the approximate solution of cell iI  under time nt . 

In order to determine the task characteristics in advance, the location prediction algorithm 
uses the Payne model of fluid dynamics and the car-following model to predict locations for 
pedestrians and vehicles, respectively. Algorithm 1 shows the location prediction process of 
pedestrians and vehicles. 

4. Dynamics-Based Location Prediction and Neural Network Fine-
Tuning Task Offloading Optimization Algorithm 

  

 

 

 

 

...... ......

......

......

 
Fig. 2. A neural network fine-tuning task offloading optimization algorithm based on location 

prediction. 
 
In this section, we introduce a neural network fine-tuning task offloading optimization 
algorithm based on location prediction. 

In our previous research [25], when we use a neural network to optimize task offloading of 
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the pedestrian-vehicle interaction scenario, the neural network can make suitable task 
offloading decisions at the beginning. However, as pedestrians and vehicles change, when the 
difference in task characteristics at different times is relatively large, we continue to use pre-
trained neural network to optimize task offloading, which leads to a decline in system 
performance. Since retraining the neural network takes too long, we consider continuously 
fine-tuning the neural network based on the similarity of task characteristics in adjacent time. 

A neural network is fine-tuned periodically, it can slowly adapt to the scenario over time. 
However, when a congestion occurs suddenly in the scenario, the fine-tuning does not give a 
better task allocation in time. The normal driving of the vehicle will be affected and lead to 
the occurrence of accidents. In order to avoid this situation, it is necessary to predict the 
situation around the environment in advance, so that the neural network can perceive the 
changes of the environment in advance and fine-tune it, and then obtain better decisions in the 
first time. Finally, as shown in Fig. 2, we design a neural network fine-tuning task offloading 
algorithm, combining with location prediction for pedestrians and vehicles by the Payne model 
of fluid dynamics and the car-following model, respectively. 

Specifically, the algorithm first requires a neural network used for decision-making 
previously, which is obtained by the deep Q-learning based algorithm. On the same timeline, 
with the change of task characteristics, we use the neural network to make decisions while 
predict the location of pedestrians and vehicles and fine-tuning another same neural network. 
Whenever the fine-tuning ends, we replace the decision-making neural network with the fine-
tuned neural network. Finally, the fine-tuned neural network can be used to generate task 
offloading decisions with better performance and repeat the above process periodically. Fine-
tuning means that we obtain small batches of experience from the surrounding environment 
through Q-learning over a period of time, and then train the neural network. 

The algorithm contains the two following stages. 
1) Fine-tuning stage: Each fine-tuning may improve the neural network’s performance, so 

fine-tuning can be uninterrupted and periodic. The fine-tuning stage includes Q-learning 
sampling and neural network training. Before entering the fine-tuning stage, we first need to 
obtain an initial neural network to make decisions previously and get the decision results. In 
the proposed algorithm, a training sample are represented as 

( ), , , ,, , ,S L Q Ln i j n i t n i jU=                                                 (7) 

where { }, , , , ,, , , 1,2,...,Ln i n i n i n i j jC Z l j Jλ= =  represents a state. ( ), ,Q Lt n i jU  denotes the Q-

value vector of all J  actions corresponding to state ,Ln i . , ,n i jl  represents the distance from 

the task ,n iD  to jU . 
After setting relevant parameters, i.e. learning rate α , discount factor γ , maximum 

number of Q-learning iterations E , maximum number of neural network training iterations 
F , and prediction time preT , we need to initialize the Q table, and use the location prediction 
to predict the location of pedestrians and vehicles at time pret T+  according to the initial 
location of pedestrians and vehicles at time t , and generate corresponding task characteristics. 
According to these task characteristics, all states at time pret T+  are constructed and input into 
the initial neural network. The obtained output is assigned to the Q table, and then the RSU 
corresponding to the maximum Q-value for each task is obtained through the Q table as the 
task offloading decision xτ . 
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Next, a state ,Ln i  is selected randomly. Before selecting the RSU, the total offloading delay 
beforeT  is calculated. Then, an action jU  and the next state ,Ln i′ ′  are selected randomly. After 

selecting the RSU, the total offloading delay afterT  is calculated. The above two delay 
differences before afterT T−  are used as the reward value of this state-action pair. The Q-value of 
this state-action pair according to the Bellman equation and the offloading strategy are updated 
if before afterT T−  is positive. The corresponding samples are generated and stored into the 
storage unit. When the number of Q-learning iterations reaches E , we select all the new 
training samples to train the neural network. Then the above process is repeated 
uninterruptedly. 

2) Strategy decision stage: This stage specifically means that we input the four parameters 
of each state into the fine-tuned neural network to make better offloading decision. The time 
required for the fine-tuning stage does not affect the time of the strategy decision stage. The 
proposed algorithm can quickly obtain task offloading decisions. 

When using the proposed algorithm to optimize task offloading, in the fine-tuning stage, 
the number of samples obtained, the number of times required for neural network training, and 
the period of fine-tuning will affect the algorithm performance. Therefore, we need to optimize 
the parameters in the algorithm. We know that the number of Q-learning iterations determines 
the number of samples obtained, the number of neural network training iterations determines 
the learning effect of the neural network, and the fine-tuning period is determined by both, so 
the algorithm performance is also determined by them. 

Because the training results of neural networks and the sampling process of Q-learning 
have randomness, the performance after fine-tuning is also affected by this randomness, and 
it is impossible to determine the specific expression between the fine-tuning performance and 
the two parameters, so the combination of parameters that achieves the optimal performance 
is searched by statistical methods. 

Firstly, we need a metric to evaluate fine-tuning performance. The deep Q-learning based 
algorithm and the Q-learning based algorithm are considered as benchmark algorithms to 
evaluate the performance of the proposed algorithm. Let T  be the duration of the scenario and 

( )w t  be the time delay obtained by task offloading of the scenario using one of the algorithms 
at moment t . Then the performance evaluation of the proposed algorithm is given by 

( ) ( )
.

( ) ( )

Proposed QL
T T

DQL QL
T T

w t w t
PE

w t w t
−

=
−

∑ ∑
∑ ∑

                                          (8) 

Secondly, the values of the two parameters are fixed, and then the proposed algorithm is 
used to optimize decisions of task offloading. After the optimization is completed, the 
performance evaluation under this combination of parameters is calculated using (8). Then we 
repeat the above process dozens of times and take the average value of PEs as the performance 
of the algorithm under this combination of parameters. 

Finally, according to the statistical true values, we fit the surface diagram of parameters 
and PEs. The relationship between the two parameters and PE is not simply linear, so we use 
a non-parametric approach to analyze directly from the data. Local linear regression [29] is a 
non-parametric method used to fit nonlinear data. From the fitting results, the optimal 
parameter combination can be directly obtained. 
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5. Simulation Results and Analysis 
In this section, we prove the prediction accuracy of the Payne model by comparing the 
prediction results of pedestrian flow. To verify the performance of the proposed algorithm, we 
conduct simulations. The simulation settings and result analysis are as follows. 

5.1 Prediction Accuracy 
Table 1. Simulation parameters for prediction accuracy 

Parameters Value Parameters Value 
τ  2 s fu  1.12 m/s 

x∆  0.5 m C  0.5 
x  30 m preT  1800 s 

t∆  0.1 s G  100 
jk  5.68 ped/m2 θ  4 

 
The pedestrian data of collected in this paper comes from a university road. The road is 30 
meters long and 25 meters wide. We record pedestrian flow within 5 seconds each time for a 
total of 30 minutes. Based on historical pedestrian data, prediction simulation parameters can 
be determined. For the LWR model and the Payne model, the initial pedestrian density 
distribution is determined. The open boundary condition is used at the entrance, that is, the 
measured data is completely used, and then the model is used for prediction. The predicted 
location is the pedestrian flow at the section of 25 meters. Table 1 shows simulation 
parameters for prediction accuracy. 

1) Comparison of the predicted values of the true values of the LWR model and the Payne 
model. 
 

 
(a) LWR model                                                       (b) Payne model 

Fig. 3. Comparison of true value and predicted value under different model prediction. 
 

As shown in Fig. 3, at the peak time of commuting and classes on the university campus, 
the pedestrian density increases first and then decreases, and the whole process of pedestrian 
density is more concentrated. Considering the influence of the number of pedestrians on the 
size, type and number of tasks generated by the vehicles, we try to predict the precise values 
of the number of pedestrians. In order to evaluate the error between the model predicted values 
and the true values, the commonly used indicator is the Root Mean Square Error (RMSE). 
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According to the data calculation, the RMSE of the LWR model is 4.2917, while the RMSE 
of the Payne model is 3.3714, which indicates that the Payne model has better prediction 
performance. 

2) The error histograms of the predicted and real values of the two models after difference 
respectively. 
 

 
(a) LWR model error histogram                            (b) Payne model error histogram 

Fig. 4. Comparison of error histograms predicted by different models. 
 

In addition, the prediction performance of the model can be further evaluated by the error 
histogram. The error histogram shows the number of data points in different error ranges, 
which helps to understand the distribution of prediction bias of the model. As shown in Fig. 4, 
the abscissa represents a specific range of error, the ordinate represents the number of data 
points in a sample that fall within a specific range of error, and the red line is the normal 
distribution curve. When the error histogram is similar to the shape of normal distribution, it 
shows that the prediction error of most data points is small and concentrated near the average 
value, while the larger error is rare, which indicates that the model has high-precision 
prediction ability, with small and stable prediction biases. By comparing the error histograms 
of the two models, it can be observed that the sample data of the Payne model is more 
concentrated near the center and less distributed on both sides. In contrast, the sample data of 
the LWR model is less in the center and more distributed on both sides, which indicates that 
the Payne model has better prediction performance. 

In summary, by comparing the RMSEs and error histograms of the two models, it is verified 
that the Payne model can predict the number of pedestrians more accurately. 

3) The running time of location prediction algorithm. 
The time complexity of Algorithm 1 is 2( )O n . The simulation was performed on a laptop 

with an i5-9300H processor and GTX1650 graphics card. Under this computer configuration, 
the running time of Algorithm 1 is 0.18 seconds. 

5.2 Parameter Optimization 
We use Matlab tools to simulate the scenario shown in Fig. 2. The laptop configuration used 
for the simulation was an i5-9300H processor and GTX1650 graphics card. The selected 
scenario is the part from the formation to the dissipation of the congestion of pedestrians and 
vehicles. We record 500 cycles and a cycle is 25 ms. Some parameters of Table 1 are changed 
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due to the difference of pedestrian speed and road. Table 2 shows simulation parameters for 
parameter optimization and performance evaluation. 
 

Table 2. Simulation parameters for parameter optimization and performance evaluation 
Parameters Value Parameters Value 
J  5 E  [100,9000] 
K  13 F  [100,2000] 
N  16 α  0.4 
C  0.01~0.6 MB γ  0.9 
Z  0.01~0.6 GHz preT  [0.14,57.24] s 

maxT  [20,200] ms x  80 m 
R  30 m d  10 m 

jλ  [0,100] task/s fu  0.82 m/s 

 

 
Fig. 5. Two parameters vs. PE. 

 
The statistical true values and the three-dimensional surface fitting result are shown in Fig. 

5. The R-square value after fitting is 0.8447, which is a statistic used to measure the goodness 
of the fitting model, and the closer the R-square is to 1, the more accurate the fitting is. 
Parameter I and parameter II represent the number of neural network training iterations and 
the number of Q learning iterations, respectively. Equation (8) shows that the smaller the PE 
is, the closer the performance of the proposed algorithm is to the optimum, and then the fine-
tuning performance will be better. Fig. 5 shows that there exists a combination of two 
parameters that makes the performance of fine-tuning optimal. According to the fitting result, 
the optimal parameters combination of the algorithm is the number of neural network training 
iterations 300 and the number of Q-learning iterations 1000. Later we use this optimal 
combination of parameters for algorithm performance evaluation. 

5.3 Performance Evaluation 
The performance of the proposed a neural network fine-tuning task offloading algorithm 
combined with location prediction is evaluated by comparing the benchmark algorithms. 

1) Comparison of the Results of Tasks Offloading to RSUs: In the simulation scenario, 
triangles, squares and circles represent RSUs, vehicles and pedestrians, respectively. The red 
dot on the square represents the task generated by the vehicle, and the connection of the red 
dot and the triangle represents the task chooses the RSU for offloading. When congestion 
occurs, results using different algorithms are shown in Fig. 6. 

0

0.2

2000

0.4

0.6

PE

1.2

1

0.8

80001500 6000

Parameter I

1000

Parameter II

4000500 2000
0 0

True value



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 12, December 2023                        3429 

 
(a) Deep Q learning based algorithm 

 
(b) The proposed algorithm 

 
(c) Q learning based algorithm 

Fig. 6. Comparison of the results of tasks offloading to RSUs. 
 

As shown in Fig. 6(a), the pre-trained neural network in deep Q-learning only learns the 
samples of the past time. When the current task characteristics are quite different from those 
of the past tasks, the offloading decisions made by this neural network are no longer applicable 
to the current task characteristics, which may lead to some of the RSUs not being fully utilized. 

Fig. 6(b) shows that the proposed algorithm can achieve better task allocation than the deep 
Q-learning-based algorithm. The proposed algorithm continuously fine-tunes the neural 
network through new samples, and the neural network after each fine-tuning can make better 
decisions than before. Due to the insufficient number of fine-tuning, the neural network is 
unable to make the optimal task allocation decisions at present. However, as the number of 
fine-tuning increases over time, the decisions obtained by using the neural network are getting 
better and better, and even can achieve optimal task allocation. 

With sufficient optimization time, the near-optimal task allocation can be achieved by the 
Q-learning based algorithm as shown in Fig. 6(c), but each optimization time takes too long, 
which makes it impossible to complete the optimization before the new tasks are generated, 
so the task offloading cannot be optimized in real time. 
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(a) Total delay                                                     (b) Transmission delay 

 
(c) Computation delay                                          (d) Transmission waiting delay 

 
(e) Computation waiting delay 

Fig. 7. Comparison of offloading delay. 
 

2) Comparison of Offloading Delay: In this study, the congestion stage of the 4th second 
is selected. As shown in Fig. 7, different algorithms are used to obtain the change of various 
delays as the number of vehicles grows. 
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Fig. 7(a) shows that as the number of vehicles grows, the total delays obtained by the three 
algorithms increase. Fig. 7(b) shows that the deep Q learning based algorithm cannot adapt to 
the change of task characteristics, so the tasks are offloaded to the nearest base stations, which 
has the best effect in terms of transmission delay. Fig. 7(c) shows that, due to the same task 
complexity, the computation delays are equal. Fig. 7(d), 7(e) show that the more the number 
of vehicles, the greater the waiting delay. 

In terms of the total delay, the Q learning based algorithm is always optimal. As the number 
of vehicles grows, the total delay obtained by the deep Q learning based algorithm is very 
different from the optimal one due to the change of task characteristics, but the proposed 
algorithm can be highly close to the optimal effect. 

3) Comparison of Various Average Offloading Delay Throughout the Period: As shown in 
Fig. 8, different algorithms are used to obtain the change of various delays at 25 ms intervals. 

Fig. 8(a) shows that, in terms of the average task offloading delay, the Q-learning based 
algorithm has the best performance. However, the algorithm takes a long time to run, which 
makes it impossible to optimize task offloading in real time. In terms of average delay, the 
deep Q-learning based algorithm can still close to the optimum at the beginning but the gap 
with the optimum keeps getting larger as characteristics of tasks change, indicating that the 
neural network is no longer applicable. The initial network used by the proposed algorithm is 
the same as the deep Q-learning based algorithm, so initially, both have the same performance. 
The proposed algorithm constantly predicts task characteristics and fine-tunes the neural 
network, so the average delay obtained is initially larger than the optimal one, and then it 
gradually approaches the optimal one, indicating that the neural network becomes applicable 
again. The prediction of task characteristics ensures that the neural network can give high 
performance task offloading decisions in time. 

Fig. 8(b), 8(c) show that the deep Q-learning based algorithm cannot adapt to the change 
of task characteristics, so the tasks are offloaded to the nearest base stations and the 
transmission delay is the smallest. The data sizes of tasks generated at the same time during 
the whole period are the same. Because we assume that all RSUs have the same computing 
power, the computation delays of the three algorithms are equal. 

Fig. 8(d), 8(e) show that, when congestion occurs, the number of tasks is the largest, 
resulting in the largest waiting delay for all algorithms. The deep Q-learning based algorithm 
offloads the tasks to the nearest base stations, which also lead to a larger waiting delay, 
especially when congestion occurs. During the whole period, the proposed algorithm 
continuously predicts locations and fine-tunes a neural network, and the obtained waiting 
delays are basically close to the optimal. 

4) Comparison of Decision Time: The average simulation time from task generation to the 
acquisition of task offloading decision is 1769.2 ms, 5.3 ms, and 4.8 ms for the Q-learning 
based algorithm, the deep Q-learning based algorithm, and the proposed algorithm, 
respectively. In the pedestrian-vehicle interaction scenario, the cycle for the vehicle to generate 
new tasks is very short. It can be seen from the decision time of each algorithm, the Q-learning 
based algorithm runs for a long time, which makes it impossible to complete the optimization 
before the new tasks are generated, so it is not suitable for the vehicular networks with high 
real-time requirements. The deep Q-learning based algorithm and the proposed algorithm 
combine a neural network that can learn the complex relationship between task characteristics 
and decisions, exhibiting a certain degree of generalization ability. When new tasks are 
generated, the neural network can also obtain offloading decisions in time. 
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(a) Average delay                                                  (b) Transmission delay 

 
(c) Computation delay                                         (d) Transmission waiting delay 

 
(e) Computation waiting delay 

 
Fig. 8. Comparison of various average offloading delay throughout the period. 

 
 

0 2 4 6 8 10 12

Time(s)

0

2

4

6

8

10

A
ve

ra
ge

 d
el

ay
(m

s)

DQL

Proposed

QL

0 2 4 6 8 10 12

Time(s)

0

0.5

1

1.5

2

2.5

3

3.5

A
ve

ra
ge

 tr
an

sm
is

si
on

 d
el

ay
(m

s)

DQL

Proposed

QL

0 2 4 6 8 10 12

Time(s)

0

1

2

3

4

5

A
ve

ra
ge

 c
om

pu
ta

tio
n 

de
la

y(
m

s)

DQL

Proposed

QL

0 2 4 6 8 10 12

Time(s)

0

0.2

0.4

0.6

0.8

1

1.2

A
ve

ra
ge

 tr
an

sm
is

si
on

 w
ai

tin
g 

de
la

y(
m

s)

DQL

Proposed

QL

0 2 4 6 8 10 12

Time(s)

0

0.5

1

1.5

2

2.5

3

3.5

4

A
ve

ra
ge

 c
om

pu
ta

tio
n 

w
ai

tin
g 

de
la

y(
m

s)

DQL

Proposed

QL



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 12, December 2023                        3433 

6. Conclusion 
This paper proposed a neural network fine-tuning task offloading algorithm, combining with 
location prediction for pedestrians and vehicles by the Payne model of fluid dynamics and the 
car-following model, respectively, so the task characteristics can be determined in advance. 
The algorithm periodically predicted locations of pedestrians and vehicles and fine-tuned a 
neural network for task offloading optimization. After fine-tuning the neural network using 
these task characteristics, the most suitable task offloading decision could be obtained. With 
the change of task characteristics in the scenario, the algorithm proposed in this paper could 
periodically predict locations and fine-tune the neural network to maintain high system 
performance and meet the low delay requirement. From the simulation results, compared with 
other algorithms, the proposed algorithm still guaranteed a lower task offloading delay, 
especially when congestion occurs. 
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